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ABSTRACT 

In recent years, the construction of concrete 
faced rockfill dams has generated discussions 
concerning the design of concrete slabs in the 
upstream slope. This stage of the design is usually 
carried out by means of empirical expressions, 
which determine the thickness of the slab and the 
steel reinforcement. Nowadays, optimization of 
the material layers, which constitute the rockfill, 
and the increase in the dam height have, however, 
demanded more detailed studies, specially related 
to structural behavior. 

In this paper, using the data from electro-
levels installed in the slab of UHE Machadinho, 
back analysis is applied to identify Young’s 
modulus of the material used in a particular 
region of the rockfill dam. This study is rooted in 
previous works by the authors, in which these 
data were employed to identify the loading 
parameters of the reaction of the rockfill dam on 
the concrete face. 

 
INTRODUCTION 

With the technological advance in the 
construction of concrete faced rockfill dams 
(CFRD), one notices their increase in height and 
the constant increase in usage of materials from 
excavations of the rockfill dam. At the same time, 
the monitoring of these structures has supplied 
information, which provides an outstanding 
progress in the interpretation of the behavior of 
such dams, in the evaluation of their performance 
and in the re-evaluation of their design criteria. 

The study of the concrete face of the dam, 
responsible for the impermeability of the 
upstream face, is particularly important. An 
empirical method has predominated in the 
analysis of concrete slabs using expressions 

developed to determine their thicknesses, the steel 
reinforcement distribution and rates. However, 
structural analysis resources and information 
gathered by monitoring have provided studies on 
the concrete slab behavior, which may change 
former procedures, allowing the verification of 
the dimensions of the concrete slab and the steel 
reinforcement rates, and therefore the 
improvement of design criteria. 

This paper presents studies of the concrete 
slab 24 of the concrete faced rockfill UHE 
Machadinho Dam, located at the Pelotas River, in 
the south of Brazil. The dam stands at a maximum 
height of 125m, with a crest length of 
approximately 673m. Electro-levels were 
mounted on the dam’s central slab 24 and on two 
other side slabs (14 and 36) to monitor slab 
deformation. Figure 1 presents the electro-level 
positions on slab 24. 
 
 

 
Figure 1. Electro-level positions on slab 24 

 
 

The dam was studied by the authors in [1], [2] 
and [3]. In those papers, a one-dimensional model 
was considered to represent the concrete slab and 
measured rotations were utilized to determine, by 
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back analysis, the reaction of the rockfill dam on 
the concrete face. Those results were the basis to 
obtain displacements, rotations and a bending 
moment diagrams for the concrete slab. 

In this paper, a two-dimensional mathematical 
model is adopted to represent the structure and the 
same measured rotations are used. Back analysis 
is applied to identify the Young’s modulus of the 
material of one of the embankment regions close 
to the concrete face. Next, one performs a 
structural analysis with the Young’s modulus 
obtained. The results – displacements, rotations 
and bending moments in concrete slab – obtained 
using the two-dimensional model and their 
comparison to the results obtained with the one-
dimensional model are the main objectives of this 
paper. One notices that from the bending moment 
diagram it is possible to perform a series of 
studies that permit a better evaluation of the 
concrete slab performance, so as to verify 
recommendations of empirical criteria and to re-
evaluate existing design criteria. 

 
GENERAL FORMULATION OF THE BACK 
ANALYSIS PROBLEMS 

In order to represent the reality of a given 
physical phenomenon, systems are indispensable. 
They are usually defined as a set of elements 
whose interaction is governed by a certain law. 

The most convenient way to represent a 
system is by the definition of a physical or 
mathematical model that is able to simulate it well 
as to the main aspects of its behavior under 
certain conditions. 

To define a system is to establish the 
relationships among the main parts of the system: 
input signals, system properties and output 
signals. Input signals are the actions exerted by 
the environment on the system; output signals are 
answers that specify system behavior; and system 
properties are characterized by laws defining the 
relationship between both signals. 

In system analysis, input signals and system 
properties are known and output signals are to be 
determined. In system identification, which 
comprises back analysis problems, the output 
signals are combined with system properties to 
determine input signals, or combined with input 
signals to determine system properties. 

In structural engineering, models are usually 
well-known and therefore the identification 
problem is reduced to finding model parameters 
that lead to the best relationship between 

measured quantities and values calculated by the 
model, be they related to structure geometry, 
material properties or actions. 

Therefore, the identification of parameters is 
equivalent to the mathematical problem of 
minimizing a properly defined function of those 
parameters, which involves the difference 
between measured values and calculated values. 

The definition of the function to be 
minimized, labeled objective function ( )( )pJ , is a 
consequence of identification criterion. 

The simplest criterion used in this paper, is the 
minimum square criterion: it requires no previous 
knowledge of measurement deviations and of the 
parameters to be determined and it relies on the 
minimization of the function  

 

( ) ( )[ ] ( )[ ]puupuup −−= ∗∗ TJ                        (1) 
 

where ∗u  are the measured values and ( )pu  are 
the values calculated using parameters p  for a 
given model. 

Among the various algorithms that might be 
used to minimize the objective functions, the 
Gauss-Newton algorithm was chosen, leading to 
the iteration process described as 

 
kkk ∆ppp +=+1                                            (2) 

 
where kp  is the parameter value vector and k∆p  
is the corresponding increment, calculated in 
iteration k. 

The iteration expression for the calculation of 
k∆p  in the minimum square criterion is 
 

( ) k
T

kk
T

kk ∆uAAA∆p 1−=                             (3) 
 

where 
 

kk uu∆u −= ∗                                               (4) 
 

is the vector defined by the difference between 
the measured displacements vector ( )∗u  and the 
calculated displacement vector in each iteration 
( )ku  and 
 

( )
p
puA

∂
∂=                                                    (5) 
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labeled the sensitivity matrix, is a nm×  matrix 
where m is the number of measured values and n 
is the number of parameters. 

A detailed description of these concepts and of 
minimization algorithms can be found in [4] and 
[5]. 

The determination of an explicit expression 
for A  demands an also explicit equilibrium 
equation. This paper uses the equilibrium 
equation that corresponds to the linear elastic 
model given by the finite element method, which 
is 

 
RuK =                                                        (6) 

 
where K is the structure stiffness matrix, u is the 
nodal displacement vector and R is the nodal 
force vector. 

The differentiation of (6) with respect to the 
parameters yields 
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from which follows 
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
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which is the sensitivity matrix A for a finite 
element method formulation in linear elastic 
conditions. 

An algorithm was developed to identify the 
parameters to be determined using such concepts. 
Displacements are calculated through the finite 
element method using the Adina software, 
which places elements of the stiffness matrix and 
the nodal displacement vector in a simple text 
file. The iterations were calculated through a 
Matlab routine. Figure 2 shows all the steps of 
the identification method. 
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Figure 2. Parameter identification procedure 

 
 
THE ONE-DIMENSIONAL MODEL 

The one-dimensional model, used in the 
previous works [1], [2] and [3] to identify the 
reaction of the rockfill dam on the concrete face, 
considers the concrete slab as being a linear 
elastic double cantilever beam with variable 
height. This model is referred to as the beam 
model. This beam was analyzed by the matrix 
method of structural analysis. The displacements 
and the rotations at the ends of the beam were 
considered to be known support displacements. 
The hypothesis of linear external load on the 
elements was adopted. 

Figure 3 illustrates the beam discretized by 
eight elements, in which q1, q2, q3, q4, q5, q6, and 
q7 are the load parameters to be identified. They 
stand for the difference between the known 
hydrostatic pressure and the rockfill reaction (to 
be determined). Values of the differences at the 
left and right ends were defined by preliminary 
studies, which included assessments based on 
previous design experience. 
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Figure 3. The one-dimensional model and 

measured rotations 
 
 
Figure 4 shows the hydrostatic pressure and 

the obtained rockfill reaction. By applying that 
load to the double cantilever beam, 
displacements, rotations and bending moments 
are obtained. 
 
 

 
Figure 4. Hydrostatic pressure and obtained 

reactions 
 
 
THE TWO-DIMENSIONAL MODEL 

The adopted two-dimensional model is 
discretized by the finite element method. Two 
different element types are used in this model: the 
plane strain element and the Bernoulli-Euler beam 
element. The plane strain element is used to 
discretize the rockfill and the foundation regions. 
The dam foundation is characterized by being 
composed of only one material and the rockfill is 
divided into seven zones, formed by different 
materials. The bar element is employed to 
represent the concrete slab, whose thickness is 
constant inside the element, but variable in its 
length. All materials are assumed to be 
homogeneous, isotropic, and linearly elastic. 

Figure 5 identifies the different material 
regions and Table 1 presents the values of their 
physical characteristics. 

 

Foundation (M )9

M1

M2

M4

M3

M5

M6

M7

Concrete face (M )8

 
Figure 5. Different material regions 

 
 

Table 1. Design physical parameters 
Material Young’s 

modulus  
E (MPa) 

Poisson 
coefficient 

ν  
M1 140 0.15 
M2 100 0.15 
M3 50 0.15 
M4 80 0.15 
M5 50 0.15 
M6 40 0.15 
M7 80 0.15 
M8 30603 0.2 
M9 30000 0.3 

 
 

The displacement boundary conditions are 
defined through the foundation boundary lines, as 
shown in Figure 6. 

The hydrostatic pressure on the concrete face 
is considered to be the only action on the dam. 
Due to consolidation injection carried out on the 
foundation, percolation forces throughout the dam 
are neglected. 

The hydrostatic pressure on a waterproof 
barrier in the upstream foundation was not 
considered for simplification. That hypothesis 
was validated after a series of studies, which 
verified the low significance of that action on the 
concrete face. 

One holds the deformed configuration due to 
the gravity action on the foundation and on the 
rockfill to be the reference configuration. 
Therefore, gravity forces are not applied to the 
structure. The constructive approach for the dam 
practically demands this hypothesis. 

Figure 6 illustrates the finite element mesh, 
the boundary conditions and the applied load used 
in the model. That model presents 1.599 plane 
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strain elements and 215 bar elements with a total 
of 3.472 degrees of freedom. 

 
 

 
Figure 6. Finite element mesh for the two-

dimensional model 
 
 

Measured rotations are employed to identify 
2E , the material 2M  Young’s modulus, by 

application of the iterative procedure presented in 
Figure 2. 

One remarks, in this case, that the nodal force 
vector R is independent from the parameter to be 
identified. Therefore, expression (7) for the 
sensitivity matrix is reduced to: 

 










∂
∂−=

∂
∂= − uKKuA

2

1

2 EE
                           (8) 

 
where K  is the structure stiffness matrix and u  
is the calculated nodal displacement vector, in 
correspondence to the measured rotations, in each 
iteration. One notes that the differentiation of K  
with respect to 2E  presents non-zero elements 
only for those corresponding to the 2M  region, 
which are conveniently evaluated with 12 =E . 

Under the previous conditions, applying the 
procedure described in Figure 2 and considering 

MPa00.802 =E as the initial estimation value, 
after seven iterations and with a relative error of 
0.91%, the estimated value MPa89.712 =E  is 
obtained. 
 
RESULTS 

With modulus of elasticity MPa89.712 =E , 
the structural analysis of the two-dimensional 
model is performed, and displacements, rotations 
and bending moments on the slab and 

displacement, stress and strain fields on the 
rockfill and on the foundation are obtained. 

Figure 7 presents the measured rotations, the 
rotations obtained with the one-dimensional and 
two-dimensional models and the rotations 
obtained from the measured rotations and from 
the ones calculated with the two-dimensional 
model, both adjusted by polynomials of the sixth 
order. With the exception of the last one, the 
different curves present excellent adherence of 
results. In the initial extension of the concrete 
slab, all the curves show good adherence. 
 
 

 
Figure 7. Measured and calculated rotations 

 
 

Figure 8 presents the slab deformations, 
characterized by transverse displacements of the 
slab axis, obtained with the one-dimensional 
model, with direct integration of the rotations 
using the tangent method [2] and with the two-
dimensional model. The different curves present 
good adherence of results, mostly in the initial 
extension of the concrete slab. 
 
 

 
Figure 8. Deformed configurations 
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Figure 9 shows bending moment diagrams 
obtained with the one-dimensional model and 
other two diagrams directly derived, using 

θ ′−= EIM , from adjusted rotation functions of 
measured rotations and calculated rotations with 
the two-dimensional model. The curves present a 
reasonable adherence. 
 
 

 
Figure 9. Obtained bending moment diagrams 

 
 

In order to design the concrete slab of this 
dam, the significant values of bending moments 
are the ones corresponding to initial zone AB. For 
this reason, Figure 10 amplifies and restricts the 
diagrams of Figure 9 to zone AB. With those 
results, it is possible to calculate the necessary 
steel reinforcement and compare it with the 
recommended by the empirical criteria. 
 
 

 
Figure 10. Bending moment diagrams restricted 

to zone AB 
 
 

In order to select the finite element mesh to be 
applied in the back analysis, several studies were 
carried out using different meshes. Meshes with 
different refinements presented very good 
adherence for stress, strain and displacement 
fields, but were not locally satisfactory, however, 
for bending moments at the slab’s zone AB. This 
result can be observed in Figure 11, where 
bending moment diagrams are presented for the 
back analyzed mesh (Mesh 1) and for a more 
refined one (Mesh 2), with 5.749 degrees of 
freedom. One may see some peak at the cross 
section, which defines the support transition 
between the rockfill regions M1 and M2. 
 
 

706.3kNm

122.9kNm

Mesh 1 

608.4kNm

54.7kNm

Mesh 2 

A

 B

A

 B

 
Figure 11. Bending moment diagrams on AB for 

different meshes 
 
 

For better comprehension of the peak 
occurrence, several parametric studies were 
carried out, considering the same Young’s 
modulus for M1 and M2. Under this new 
condition, Figure 12 presents the bending moment 
diagrams for different values of the Young’s 
modulus, namely 80, 100 and 140 MPa. All the 
other regions were considered with the previous 
values of the modulus of elasticity. The change in 
the diagrams is noticeable and suggestive with the 
elimination of the peaks and with significant 
reduction of the extreme moments. 
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Figura 12. Bending moment diagrams for 

different values of 21 EE =  
 
 
CONCLUDING REMARKS 

For back analysis with the objective of 
obtaining bending moment diagrams in the 
concrete slab, one considers that the one-
dimensional model, although it is a simpler 
model, presents more satisfactory results than the 
two-dimensional model. This happens because the 
one-dimensional model captures with more 
precision the concrete slab behavior, taking into 
account the interaction with the rockfill and with 
the dam foundation. However, this one-
dimensional model should not be applied to the 
straight structural analysis of the concrete slab, 
due to the impossibility of defining the rockfill 
reaction on the slab. 

For structural analysis, the two-dimensional 
model is more effective. It provides a better 
simulation of the rockfill and foundation 
interaction with the concrete slab. Additionally, it 

allows higher quality parametric studies, which 
will permit the structural design of the concrete 
slab with a better understanding of its behavior. 
The consideration of the foundation in the two-
dimensional model is indispensable to obtain 
more realistic results. 

Smoothing curves, correspondent to 
displacements and rotations obtained with the 
two-dimensional model, improve the quality of 
the results. Extremely refined meshes are avoided 
close to the slab and some unreal results are 
eliminated in the shear force diagrams 
corresponding to the obtained bending moment 
diagrams. 

Both one-dimensional models that include 
elastic support due to rockfill and foundation 
effect and non-linear physical behavior of the 
concrete and two-dimensional models that include 
the elastic-plastic behavior of the rockfill are 
being studied for analyses or back analyses, in 
order to improve the understanding of the 
behavior of concrete slabs in concrete faced 
rockfill dams. 
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